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ABSTRACT

A key feature in the induction of pathological angiogenesis is that inflammation precedes and accompanies the formation of neovessels as
evidenced by increased vascular permeability and the recruitment of inflammatory cells. Previously, we and other groups have shown that
selected growth factors, namely vascular endothelial growth factor (VEGF) and angiopoietins (Angl and Ang2) do not only promote
angiogenesis, but can also induce inflammatory response. Herein, given a pro-inflammatory environment, we addressed the individual
capacity of VEGF and angiopoietins to promote the formation of mature neovessels and to identify the different types of inflammatory cells
accompanying the angiogenic process over time. Sterilized polyvinyl alcohol (PVA) sponges soaked in growth factor-depleted Matrigel mixed
with PBS, VEGF, Ang1, or Ang2 (200 ng/200 wl) were subcutaneously inserted into anesthetized mice. Sponges were removed at day 4, 7, 14, or
21 post-procedure for histological, immunohistological (IHC), and flow cytometry analyses. As compared to PBS-treated sponges, the three
growth factors promoted the recruitment of inflammatory cells, mainly neutrophils and macrophages, and to a lesser extent, T- and B-cells. In
addition, they were more potent and more rapid in the recruitment of endothelial cells (ECs) and in the formation and maturation (ensheating of
smooth muscle cells around ECs) of neovessels. Thus, the autocrine/paracrine interaction among the different inflammatory cells in
combination with VEGF, Ang1, or Ang2 provides a suitable microenvironment for the formation and maturation of blood vessels. J. Cell.
Biochem. 116: 45-57, 2015. © 2014 Wiley Periodicals, Inc.
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The ramification of novel blood vessels from pre-existing
vascular network, termed angiogenesis, is a coordinated
sequence of cellular events consisting of sprouting, endothelial
cell (EC) proliferation, directed migration of ECs, EC tube formation,
and perivascular stabilization [Carmeliet and Jain, 2011]. Such
multistep process is tightly regulated through the maintenance of a
balance between soluble pro-angiogenic (stimulatory) and anti-

angiogenic (inhibitory) factors [Liekens et al., 2001; Noonan
et al., 2008]. A local perturbation of this equilibrium can result in
either excessive or insufficient angiogenesis leading to a variety of
diseases. With the identification of several pro-angiogenic mole-
cules, potential therapeutic interference with vessel formation is
being studied as promising tool for clinical applications [Griffioen
and Molema, 2000]. For instance, while therapeutic inhibition of
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angiogenesis may be beneficial in diseases associated to excessive
neovessel growth (e.g., solid tumor, rheumatoid arthritis, diabetic
retinopathy, atherosclerosis, and psoriasis) [Hanahan and Folk-
man, 1996], stimulation of angiogenesis may be beneficial in
conditions associated with insufficient formation of new vasculature
(e.g., tissue damage after reperfusion of ischemic tissue and cardiac
failure) [de Muinck and Simons, 2004].

Vascular endothelial growth factor (VEGF) is a well-studied
growth factor that effectively promotes neovessel sprouting and
growth in the initial phase of angiogenesis [de Muinck and
Simons, 2004; Carmeliet and Jain, 2011]. Upon discovery, its high
angiogenic potential arose the hypothesis that VEGF monotherapy
may be sufficient to promote therapeutic angiogenesis. However,
in both pre-clinical and clinical testing, although VEGF mono-
therapy was successful in promoting the formation of blood
vessels, they lacked vascular basement membrane and/or the
ensheathing of a-smooth muscle actin (a-SMA)-positive pericytes
and smooth muscle cells (SMCs), leading to the regression of newly
formed vessels [Dor et al., 2002; Henry et al., 2003; de Muinck and
Simons, 2004]. Thus, VEGF-orientated clinical trials did not
support the expected beneficial outcome in patients [Simons et al.,
2000; Stewart et al., 2009]. The discovery of a novel class of EC-
specific ligands termed angiopoietins (Angl and Ang2) showed
their capacity through the activation of Tie2 receptor to modulate
the maturation and stabilization of newly formed vessels. For
instance, while Angl in the late phase of angiogenesis plays an
important role in promoting vascular maturation and contributing
to enhance the integrity of EC barrier, Ang2 is identified to have
the capacity to destabilize pre-existing vessels prior to VEGF-
induced angiogenesis [Davis et al., 1996; Maisonpierre et al., 1997;
Thurston et al.,, 2000]. Furthermore, Angl has also been
demonstrated to have the capacity to promote in vivo angiogenesis
and both Angl and Ang2 have the potential to increase EC
migration and sprouting under certain experimental conditions
[Mochizuki et al., 2002; Teichert-Kuliszewska et al., 2001].
Nonetheless, the angiopoietins themselves exert low mitogenic
or proliferative activity on ECs [Davis et al., 1996], suggesting
that VEGF and angiopoietins exhibit distinct and overlapping
expression patterns which collaborate to regulate the different
stages of physiological angiogenesis. Hence, a single pro-angiogenic
factor may not be sufficient and effective in orchestrating all stages of
the angiogenic process and a combination of pro-angiogenic
mediators (e.g., growth factors with cytokines) may be required in
the formation of stable blood vessels. In agreement with such premise,
the emerging relationship between leukocyte infiltration and angio-
genesis attracted a lot of attention over the last years.

Proliferating tissue in rheumatoid arthritis, psoriasis, and solid
tumors per se, contains an abundance of inflammatory cells
(neutrophils, monocytes/macrophages, and dendritic cells) that
promote pathological angiogenesis either directly and/or indirectly
leading to the creation of a highly vascularized granulation tissue
[Costa et al., 2007]. The angiogenic events, in these pathologies,
further support the inflammatory response, creating a vicious cycle.
In accordance with these observations, clinical trial reports referring
to coronary angiogenesis suggested that inflammation is an
important stimulus in the induction of the angiogenic cascade

[Simons et al., 2000] and very little angiogenesis takes place in the
absence of inflammation [Jones et al., 1999]. We, in parallel with
other groups, have demonstrated that VEGF and angiopoietins, in
addition to being angiogenic factors, are also potent inflammatory
regulators; once again indicating the necessity of inflammation in
the accompaniment of angiogenesis [Maliba et al., 2008; Neagoe
et al., 2009; Dumas et al., 2012; Neagoe et al., 2012]. During the last
years, we have shown that Ang1 and Ang2, acting on Tie2 receptor,
are capable of promoting the synthesis of platelet activating factor
(PAF), a potent pro-inflammatory mediator, in both ECs and
neutrophils. Upon its synthesis, PAF promotes neutrophil upregu-
lation of B,-integrin complex (CD11b/CD18) contributing to
neutrophil adhesion and their migration onto activated ECs
[Lemieux et al., 2005; Maliba et al., 2006]. In addition, we have
reported the capacity of Ang1 to promote the synthesis and release of
IL-1 and IL-8 [Dumas et al., 2012; Haddad and Sirois, 2014] which
are both involved during inflammation and angiogenesis [Voronov
et al., 2007; Qazi et al., 2011]. Nonetheless, the exact link between
inflammation and angiogenesis such as the type and the temporal
role of the recruited inflammatory cells during angiogenesis remains
unanswered.

Various in vivo models using biomaterials (e.g., polyvinyl alcohol
sponges) and/or Matrigel have been used extensively to analyze the
angiogenic capacity of growth factors, cytokines, chemokines, and
non-protein mediators in a number of different hosts [Norrby, 2006].
Yet, many of these studies either did not look at the maturation of
blood vessels, a crucial event in the stabilization of nascent blood
vessels, or the newly formed vessels were identified to be immature
(lacking the ensheathing of SMCs). Hence, in the current study, we
utilized a novel variant of the sponge/Matrigel angiogenic model
such that the pro-inflammatory sponges were pre-incubated in
growth factor depleted Matrigel containing the tested growth factor
prior to subcutaneous implantation into wild type mice in order to:
(1) assess the individual pro-angiogenic capacity of VEGF, Angl,
and Ang2 to promote the formation and the maturation of
neovessels; and (2) to identify the different inflammatory cells
accompanying angiogenesis in a spatio-temporal manner.

MICE

C57BL/6 and BALB/c mice, 10-11 weeks old, were purchased from
Charles River Laboratories (Montréal, Canada), CDI15Y"*, and
Zbth46YP* mice were purchased from Jackson Laboratories (Bar
Harbor, ME). All animal experiments were approved by the ethical
animal care committees of the Montreal Heart Institute and Institut
de Recherches Cliniques de Montréal.

SPONGE PREPARATION AND IMPLANTATION

Sterilized polyvinyl alcohol (PVA) sponges (6 mm diameter x2 mm
width) were soaked in 200 pl of growth factor depleted Matrigel (BD
Biosciences, Mississauga, Canada) containing PBS or 200ng of
VEGF (PeproTech, Rocky Hill, NJ), Ang1, or Ang2 (R&D Systems,
Minneapolis, MN) for 20 min at 4°C. Subsequently, the sponges
were incubated for 20min at 37°C prior to implantation. Under
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anesthesia with 2% isoflurane USP, two sponges treated with the
same growth factors were inserted subcutaneously through two
lcm orthogonal incisions in the dorsa of the animals. The
incisions were then clipped for closure, and the mice were
subcutaneously injected with an analgesic agent (0.1ml of
Anaphen; 1 mg/ml). The mice were sacrificed under anaesthesia
at day 4, 7, 14, or 21 post-procedure.

HISTOLOGY AND IMMUNOHISTOCHEMISTRY ANALYSES

The harvested sponge implants were fixed in 10% formalin PBS-
buffered solution, embedded into paraffin blocks and sectioned
sagittally (6 wm thick). The sections were stained with Masson’s
trichrome reagent for a global overview of cellular invasion in the
implants. Immunohistological stainings were performed using the
avidin-biotin complex for the validation of angiogenesis and
inflammatory cells infiltration as previously described [Marchand
et al., 2002; Lemieux et al., 2005]. The primary antisera used in this
study were: ECs specific goat anti-mouse CD31 (Santa Cruz
Biotechnology Inc., CA), SMCs specific mouse anti-mouse a-SMA
(Sigma-Aldrich, Steinheim, Germany; clone 1A4), neutrophils
specific rabbit anti-mouse myeloperoxydase (MPO) (Thermo Scien-
tific, Rockford, IL), and macrophages specific rat anti-mouse F4/80
(BioLegend, San Diego, CA; clone BM8).

To assess the maturation of neovessels, a sequential double
immunohistochemistry (IHC) staining was performed. The sponge
sections underwent first round of IHC using the primary antisera
anti-CD31 and host specific biotinylated secondary antibody.
Peroxidase was developed by the DAB substrate. The tissues
underwent a second round of IHC protocol with the primary antisera
anti-a-SMA and host specific biotinylated secondary antibody.
a-SMA expression was detected in turquoise using Vina green
chromogen (Biocare Medical Inc., Concord, CA).

MICROSCOPY AND QUANTIFICATION

Images were collected using a brightfield microscope and were
analyzed using Image-Pro Plus software. Images of selected
regions of highest positive signal were acquired under 200X
magnification of each stained section (endothelial cells, neutro-
phils, macrophages, and smooth muscle cells). These selected
regions were then quantified using the color segmentation method.
Thresholds were empirically set to select pixels by analyzing a test
set of 10 images per batch of staining. The selected pixels
represented the expression of the stained cell. These empirically
determined thresholds were recorded in a macro and were applied
to all images that were analyzed. The number of pixels counted by
the macro was recorded in mm?. The Matrigel area was measured
using Image Pro’s calibrated area measurement tool in mm”. The
percent occupancy of studied cells in the Matrigel from each
sponge was calculated by taking the mean of: (area of counted
pixels (mm?/area of Matrigel (mm?)x 100 of five randomly
selected images per sponge. The mean microvessel density was
expressed as the absolute number of microvessels counted/area of
Matrigel (mm?®). The cross-sectional area occupied by these blood
vessels was also simultaneously measured. The vessel maturation
index was measured as: ((number of a-SMA-positive vessels/
number of CD31-positive vessels) x 100).

SPONGE SINGLE CELL PREPARATION AND FLOW CYTOMETRY
ANALYSIS

Single cell suspensions were isolated from sponges and spleen as
previously described [Choi et al., 2011]. Briefly, the sponges and
corresponding spleens were isolated from C57BL/6 mice, minced and
incubated for 60 min at 37°C in an enzyme mixture. Following the
blockage of Fc receptors using culture supernatant of 2.4G2
hybridoma, the cells were stained with fluorophore-conjugated
antibodies. The stained cells were acquired using LSR Fortessa
(Becton Dickinson, Mississauga, Canada) and were analyzed using
FlowJo (Tree Star Inc., Ashland, OR). The monoclonal antibodies
used in both flow cytometry analysis and FACS were anti-mouse
CD45, CD64, CD3, CD19, Ly6G (clone: 1A8), MHCII, CD11c, and
corresponding isotype controls were purchased from BioLegend.

ANALYSIS OF PHAGOCYTOSIS

Sponge and splenic CD45"CD11c"MHCII™ cells isolated from
C57BL/6 mice, were incubated with 0.00134% of 0.50 pm
Fluoresbrite® YG Microspheres (Polysciences, Inc., Warrington,
PA) for 30 min at 37°C. The cells were then labeled with monoclonal
antibodies against CD45, CD11¢, MHCII, and CD19 and analyzed by
flow cytometry.

MIXED LEUKOCYTE REACTIONS

Sponge and splenic CD45"% cells were FACS (Beckman Coulter
MoFlo, Mississauga, Canada) sorted into CD11c*MHCI" cell
population and CD11c MHCII Ly6G™* neutrophils from C57BL/6
mice. For proliferative analysis, splenic T-cells were isolated from
BALB/c mice by excluding B220", F4/80", CD49b*, and I-Ab™ cells
using anti-rat IgG Dynabeads (Invitrogen, Burlington, Canada).
These allogenic T-cells were subsequently labeled with carboxy-
fluorescein diacetate-succinimidyl ester (CFSE) and were combined
with isolated stimulator cells (splenic CD11c*MHCII™" cells, sponge
CD11c"MHCI™" cells, and neutrophils; stimulator: T-cell ratio of
1:10) in microtest wells at 5,000 of stimulator to 50,000 T-cells/well.
Four days later, T-cell proliferation was evaluated by CFSE dilution
in flow cytometry.

STATISTICAL ANALYSIS

Results are presented as the mean 4+ SEM and all comparisons were
made between each conditions at corresponding days by analysis of
variance (ANOVA) followed by a Bonferroni t-test. Differences were
considered significant at P-values less than 0.05.

VEGF AND ANGIOPOIETINS PROMOTE BLOOD VESSEL FORMATION
Previous studies have demonstrated that VEGF and angiopoietins
play precise, complementary, and coordinated roles in angiogenesis.
In the present study, we wanted to assess the individual pro-
angiogenic activities of VEGF and angiopoietins in a novel variant of
the sponge/Matrigel angiogenic model. To monitor vascularization
and to examine the angiogenic microenvironment in the sponges, we
performed histological analysis using Masson’s trichrome staining
of the sponges at different time points from day 4 to day 21. Sponges
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containing PBS followed the time-course of the host foreign body
response in terms of cellular infiltration and neovessels formation
(Fig. 1A and C). In contrast, sponges loaded with VEGF, Ang1, or
Ang2 (200 ng/200 ) elicited a robust invasion of various cell types
into the Matrigel giving rise to a highly vascularized matrix by day 7
(Fig. 1B and D-F).

Based on endothelial cell-specific CD31 THC detection (Fig. 2A;
upper left insert), for a more comprehensive analysis, sponges
containing PBS, VEGF, Ang1, or Ang2 showed marginal amount of

EC recruitment by day 4 (Fig. 2A). However, in the presence of any
one of the tested growth factors, this effect became significant by day
7 and 14 with an increase of ~3-5 fold as compared to PBS-treated
sponges. At day 21, the percentage of CD31 expression in PBS-
treated sponges became comparable to VEGF and Ang2 treated
sponges, whereas Angl continuously maintained its capacity to
recruit ECs. These recruited ECs took their neovessel structure (lumen
formation) by day 7 in presence of VEGF, Ang1, or Ang2 (Fig. 2B).
Once formed by day 7, the microvessel density remained stable,
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Fig. 1. Pro-angiogenic and inflammatory activities of VEGF and angiopoietins in mice. The images illustrate representative scans (A and B) and representative histological

sections (Masson's trichrome staining, 400x magnification) of PVA sponges soaked in growth factor depleted Matrigel containing PBS, VEGF, Ang1, or Ang2 (200 ng/200 p.I)
harvested at day 7 (C-F). Treatment with VEGF, Ang1, or Ang2 promoted a marked recruitment of numerous inflammatory cells, endothelial cells, and mural cells in the region of
Matrigel within the sponges and the formation of neovessels (black arrow) containing circulating red blood cells (star), indicative of functional blood vessels (B and D-F).

Neovessel formation from endothelial cells (lumen formation) lacking circulating red blood cells was also observed (white arrow). In contrast, PBS treated sponges showed less

cellular accumulation and no blood vessel formation by day 7 (A and C).
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Fig. 2. Effect of VEGF and angiopoietins on angiogenesis in a time-dependent manner. PVA sponges soaked in growth factor depleted Matrigel containing PBS, VEGF, Ang1, or
Ang2 (200 ng/200 1) were removed from the animals at day 4, 7, 14, or 21. Subsequently, IHC staining against endothelial cell specific CD31 protein was performed in order to
assess the recruitment of endothelial cells (IHC insert; 1000 x ; A), microvessel density (B) and the average cross-sectional area occupied by the vessels (C) in the Matrigel. Data are
represented as mean & SEM of 4 to 10 independent experiments per condition. 'P< 0.05, "P< 0.01,and " P < 0.001 as compared to PBS-treatment at corresponding days, N/D:
not detectable.

ranging from 50 to 70 vessels/mm” of Matrigel. Although delayed in cross-sectional area occupied by the neovessels formed by day 14 to
time, the microvessel density under PBS-treatment became com- 21 (>250 pumz] was greater than the area of vessels formed in
parable (=50 vessels/mm? of Matrigel) to the growth factor-treated presence of VEGF or Angl (=150-225 pumz). However, under PBS
sponges by day 14 (Fig. 2B). Finally, in presence of Ang2 the average treatment, the primary vessels formed by day 14, were smaller
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(=100 wm?) but underwent remodeling and nearly doubled by day
21 (Fig. 2Q).

VEGF AND ANGIOPOIETINS PROMOTE BLOOD VESSEL MATURATION
Vessel maturation is critical in angiogenesis, as the stability of an
induced vasculature is dependent on the mural cell association to
prevent vessel regression [Bergers and Song, 2005]. We thus, wanted
to elucidate the temporal sequel of VEGF and angiopoietins mediated
maturation of neovessels given a pro-inflammatory environment.
The recruitment of SMCs was detected based on a-SMA protein
expression by day 7 in all tested conditions (Fig. 3A). Yet, treatment
with VEGF and angiopoietins individually triggered a more rapid
and pronounced recruitment of SMCs, producing a ~10-12-fold
increase as compared to PBS-treated group. By day 14, the number of
SMCs detected under growth factor stimulation plateaued, while the
venue of SMCs under PBS treatment caught up yet remaining ~2.5-
3-fold lower to what was mediated by VEGF and the angiopoietins.
We also observed that by day 21, the area covered by SMCs in
presence of VEGF or Angl was maintained whereas it partially
declined under PBS or Ang2 treatment (Fig.3A).

To assess whether the SMCs remained sparse into the Matrigel
and/or associated with neovessels, we performed double THC
staining against CD31 and a-SMA proteins. We observed a common
inflection point by day 7 in presence of the different growth factors,
favoring the formation of neovessels, the migration of SMCs, and the

>

=

surrounding of SMCs around the neovessels as compared to PBS-
treated sponges (Fig.3B). Sponges harvested at day 4 under all of the
tested treatments only supported the recruitment of ECs and not of
SMCs (Fig.3A). By day 14 and 21, the maturing blood vessels were
covered with multiple layers of SMCs for all conditions (Fig.3B).
However, although the number of neovessels surrounded by at least
a single layer of SMCs by day 7 was ~60-70% and reached up to 80%
by day 14 or 21 under growth factor treatments, it plateaued to about
40% by day 14 in PBS-treated sponges (Fig.3C).

VEGF AND ANGIOPOIETINS MEDIATED ANGIOGENESIS IS
ACCOMPANIED BY INFLAMMATORY CELLS

Inflammatory cells, namely neutrophils and monocytes/macro-
phages participate in the angiogenic process through the secretion of
pro- and anti-inflammatory cytokines by controlling EC activation,
migration, and proliferation [El et al., 2000; Lingen, 2001; Voronov
et al., 2003]. Using anti-MPO antibody (Fig. 4A; upper right insert),
we observed significant recruitment of neutrophils by day 7 in
presence of VEGF, which peaked by day 14 covering about ~2% of
total surface area, and then faded away by day 21. In addition, VEGF
was more potent as compared to the angiopoietins to promote the
recruitment of neutrophils by day 14. Ang2 showed a significant
peak (x19%) in neutrophil recruitment by day 7 and its potency
decreased gradually over time. On the other hand, Ang1 showed a
mild effect on neutrophil recruitment as compared to PBS-treated
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Fig. 3. VEGF and angiopoietins mediated SMC migration and neovascular maturation in the sponges. PVA sponges soaked in growth factor depleted Matrigel containing PBS,
VEGF, Ang1, or Ang2 (200 ng/200 1) were removed from the animals at day 4, 7, 14, or 21. Subsequently, IHC staining against «~SMA was performed in order to assess the venue
of SMCs (A). The 4 panels represent immunohistogical snapshots illustrating the temporal evolution of mature blood vessels in the sponges in presence of the studied growth
factors (Ang1) at days 4, 7, 14, and 21. Endothelial cells were stained with anti-CD31 (brown staining; thin arrow) and SMCs were stained with anti-«~-SMA (turquoise staining;
thick arrow) (1000 x magnification). The neovessels were not only ensheathed by SMCs, but also contained red blood cells (star) (B). The percentage of mature blood vessels was
quantified as the number of neovessels surrounded by SMCs over the total number of blood vessels (C). Data are represented as mean & SEM of 4 to 10 independent experiments
per condition. "P< 0.05, "P< 0.01, and ~'P< 0.001 as compared to PBS-treatment at corresponding days, N/D: not detectable.
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detectable.

sponges (Fig. 4A). We looked at the recruitment of monocytes/
macrophages based on F4/80 selective protein detection (Fig. 4B;
upper right insert). The three growth factors individually tended to
have a peak recruitment of macrophages by day 14, which was
massive and significant under VEGF treatment (x~1%) as compared
to PBS and angiopoietins-treated animals (Fig. 4B).

CHARACTERIZATION OF INFLAMMATORY AND IMMUNE CELLS IN
SPONGES BY FACS ANALYSES

To delineate the different leukocyte subsets recruited in the sponges,
we utilized multicolor flow cytometry procedure on single cell
preparation from sponges. CD45" leukocytes in the sponges were
primarily comprised of CD11c¢"MHCII" cells, CD11c  MHCII Ly6G+
cells (neutrophils), CD11c MHCII CD3" cells (T-cells), and
CD11¢c MHCI'CD19" cells (B-cells) (Fig. 5A). The fate of

CD11c*MHCI™ cells at this point remained to be investigated.
Previous studies demonstrated that dentritic cells (DCs) constitu-
tively express the hematopoietic markers CD45, CD11c, and MHCII
in lymphoid tissues such as spleen and lymph nodes. Nonetheless,
this marker expression profile on its own is not sufficient to define
classical DCs (cDCs) in nonlymphoid tissues. In fact, high and similar
levels of CD11c and MHCII expression have been observed in both
¢DCs and in macrophages [Gautier et al., 2012]. Thus, we performed
marker analyses, genetic, and functional studies to specifically
identify the CD11c"MHCII" cell population in the sponges as cDCs
and/or macrophages. Recently, Zbtb46 was identified as a selectively
expressed transcription factor by c¢DCs but not by monocytes,
macrophages and other lymphoid and myeloid lineages (e.g.,
neutrophils, T-cells and B-cells) [Satpathy et al., 2012]. Therefore,
we harvested sponge cells from Zbtb46*/* (WT) and Zbtb46¥?"* mice
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Fig. 5. CD11c¢"MHCII™ cells recruited in the sponges do not possess DC-characteristics. Single cell suspensions from sponges harvested from C57BL/6 mice were examined for
surface expression of indicated markers. The data illustrates the expression profile of CD11cand MHCII, CD3 (T-cells), CD19 (B-cells), and Ly6G (neutrophils) within CD45™ gated cell
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and analyzed for GFP expression. As anticipated, CD45% cell
population containing splenic DCs were GFP™ while neutrophils
recruited in the sponges were devoid of GFP expression. In contrast
to splenic DCs, CD11c*MHCII" cell population isolated from the
sponges lacked expression of GFP (Fig. 5B). Next, FACS-sorted
CD11c*MHCII" cells from sponges and spleens along with
neutrophils were tested for their ability to stimulate allogenic
T-cells. Only splenic DCs were strong stimulators of T-cell proliferation

(Fig. 5C). T-cells alone, neutrophils from sponges and spleen and
CD11ctMHCIY cells from sponges did not induce allogenic T-cell
proliferation. These results confirm that CD11c*MHCI™" cells in the
sponges do not possess DCs functional characteristics.

In contrast, CD11c™MHCII" cells from PBS, VEGF, Ang1, and
Ang2-treated sponges were positive for F4/80 marker while the
neutrophils from the corresponding sponges were negative (Fig. 6A).
Although in the past, F4/80 served as a reliable marker of
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macrophages, additional analysis of a panel of surface markers is
now required to define macrophage population. Recently, the surface
marker CD64 expression was identified as a reliable marker of
mature tissue macrophages [Gautier et al., 2012]. Interestingly, in
our study, we observed that the CD11c"MHCII" cells isolated from
the sponges were all CD64". Moreover, they also expressed CD68
and CD206, two additional markers of macrophages [Gautier et al.,
2012] (Fig. 6B). To test whether the CD11c " MHCII" cells recruited in
the sponges had the phagocytic activity of macrophages, we
analyzed their phagocytic capacity by flow cytometry. Neutrophils
from the sponges took up 0-2 beads/cell while all sponge
MHCIICD11c™ cells were highly phagocytic (>3 beads uptake/
cell). B-cells isolated from the sponges served as our negative control
and it provided no phagocytic activity (Fig. 6C). To further confirm
these isolated cells from the sponges as macrophages, we used
transgenic CD11 59P/* mice, which express MCSF-1R, a receptor for
macrophage-colony stimulating factor [Sasmono et al., 2007].
Indeed, the CD11c"MHCI*' cells isolated from the sponges
implanted in CD115%"* mice were GFP positive. However, B-cells
(negative control) from the transgenic CD1 1597+ and WT mice were
GFP negative (Fig. 6D). Taken together, these results demonstrate
that the MHCII"CD11c" cells present in the sponges are macro-
phages and not DCs.

Compelling studies have demonstrated the direct participation of
neutrophils and monocytes/macrophages in the induction of
inflammatory response prior to the initiation of pathological
angiogenesis. Indeed, the release of pro-inflammatory cytokines
and growth factors provides a suited autocrine/paracrine milieu to
fully support blood vessels formation [Schruefer et al., 2005; Aplin
et al., 2006; Lin et al., 2006; Gong and Koh, 2010]. As we have
previously illustrated the pro-inflammatory activities of VEGF and
angiopoietins, we were led to address their capacity to promote
inflammatory response associated to in vivo angiogenesis. In the
present study, we utilized a novel variant of the murine sponge/
Matrigel angiogenic assay to evaluate the sequel of host-derived
blood vessel formation and inflammatory cell infiltration into the
sponges. Herein, we demonstrate that VEGF, Angl, and Ang2
individually are highly potent and efficacious in recruiting ECs,
SMCs, and inflammatory cells (mainly neutrophils and macro-
phages, and sparsely T- and B-cells). More importantly, these tested
growth factors given individually were not only capable to favor the
formation of neovessels but also their maturation as observed by the
coordinated ensheating of SMCs around the neovessels and the
presence of circulating red blood cells in the vessel lumen. Hence,
this study suggests the potential contribution of both inflammatory
cells and angiogenic growth factors to fully support blood vessel
formation and their maturation.

Recent efforts in clinical trials focus on localized therapy for
restoring blood flow in ischemic regions as tissue loss in these
patients was localized [Simons et al., 2000]. While growth factor
therapy remained a gold standard for the induction of local
therapeutic angiogenesis, translating this concept into an effective

and safe therapy for patients became a challenge. Presently, bio-
material based approaches is being successfully utilized in animal
models to study the capacity of growth factors, cytokines/chemo-
kines, and nonprotein mediators to promote blood vessel formation
[Andrade et al., 1997]. One such method is the subcutaneous
implantation of PVA sponges in mice, which promotes a robust
infiltration of inflammatory cells, providing a pro-inflammatory
environment, and giving rise to a highly vascularized sponge matrix.
However, due to continuous inflammation, these newly formed
vessels were postulated to be fragile, permeable, and dilated with no
indication of neovessel maturation (lack of SMCs ensheathing)
[Andrade et al., 1997]. A major disadvantage of such matrix
implantation is that it induces non-specific inflammatory host
response and thus limits to acute studies [Staton et al., 2009]. Later,
the Matrigel plug assay became the widely used model for studies
involving in vivo testing for angiogenesis, as it provides a natural
environment for the formation of neovessels without inducing non-
specific immune response [Staton et al., 2009]. Yet, although
Matrigel injection containing VEGF in mice successfully promoted
the formation of neovessels, the model did not lead to the maturation
of the newly formed vessels [Tengood et al., 2010]. As inflammation
is an important stimulus for the induction of new vessel growth, we
hypothesized that the combination of both these approaches might
fulfill the required environment to favor the formation and
maturation of neovessels. The classical sponge/Matrigel model,
encompassing both the sponge model and the Matrigel assay,
requires the subcutaneous injection of Matrigel containing the
protein of interest, 20-30 min prior to the surgical introduction of
PVA sponges [Akhtar et al., 2002; Norrby, 2006]. This method has
been identified to provide variable amount of test compound within
the implants and to trigger the fibrotic encapsulation of the sponges
[Norrby, 2006]. In our variation of the sponge/Matrigel model, we
have soaked PVA sponges into Matrigel containing the tested growth
factors prior to the surgical implantation. We observed that our
technique was simple, less time consuming, that each sponge
implant contained equal volume of the tested growth factors and it
did not induce non-specific immune response.

We observed an early onset of EC migration in the sponges within
the first 4 days and a significant number of blood vessel formation by
day 7 under VEGF or angiopoietin stimulation, thus, challenging the
classical role of angiopoietins in angiogenesis. Interestingly, the
amount of ECs migrated into the sponges kept increasing up to day
14 or 21, while the number of blood vessels once formed by day 7
remained stable, suggesting that the model itself exerts a restrain on
the maximal capacity of blood vessel formation even in presence of
free ECs. Our data is in line with previous studies reporting the pro-
angiogenic and mitogenic activities of VEGF in various in vivo
models including the chick chorioallantoic membrane [Plouet et al.,
1989], the rabbit cornea [Phillips et al., 1994], and the primate iris
[Tolentino et al., 1996]. However, the capacity of angiopoietins to
initiate the angiogenic cascade remains controversial. For instance,
while some in vivo reports demonstrated that Ang1 alone is unable
to induce angiogenesis but can potentiate VEGF mediated
angiogenic response [Asahara et al., 1998; Chae et al., 2000], others
showed that Angl can promote a robust neovascularization in
Matrigel implants [Babaei et al., 2003]. The implication of Ang2 in
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angiogenesis is tied with VEGF where it promotes destabilization of
pre-existing blood vessels in the absence of VEGF [Holash et al.,
1999; Lobov et al., 2002]. Yet, other studies reported that Ang2 alone
can induce vascular remodeling and angiogenesis in absence of
VEGF [Kim et al., 2000b; Mochizuki et al., 2002]. Our study illustrates
that the pro-inflammatory environment itself is sufficient to initiate
the angiogenic cascade and the addition of the tested growth factors
further allows this effect to be more potent and efficient.
Interestingly, we also observed the venue and the ensheathing of
SMCs around neovessels by day 7 in presence of the tested growth
factors. Indeed, all three growth factors promoted the maturation of
blood vessels with equal potency. Although, our result is consistent
with the stabilizing effect of Ang1 on vascular endothelium, it is also
in contradiction with the proposed role for VEGF and Ang2 during
angiogenesis. In fact, VEGF and angiopoietins are incapable of
directly activating SMCs. Yet, they can promote the activation of ECs
and support the migration of inflammatory cells (e.g., macrophages
and neutrophils) which can promote the release of various growth
factors and cytokines (e.g., FGF, VEGF, Ang1, interleukins [IL-13, IL-
8 and -10], and CXCL1) [Gaudry et al., 1997; Noonan et al., 2008;
Dinarello, 2009; Neagoe et al., 2009]. Ang2 in particular, has been
shown to possess pro-inflammatory characteristics on both ECs and
neutrophils [Lemieux et al., 2005; Fiedler and Augustin, 2006;
Fiedler et al., 2006; Kim and Koh, 2011]. In addition, neutrophils and
macrophages can equally trigger the release of numerous metal-
loproteinases, neutrophil elastase, and reactive oxygen species
(ROS), which can facilitate extracellular matrix degradation,
favoring the migration and proliferation of ECs and SMCs (reviewed
in [van Hinsbergh et al., 2006]). In addition, the presence of
neutrophils and macrophages in the sponges at day 7 during the
recruitment of SMCs may initiate a paracrine compensation pathway
in order to trigger the maturation event. Interestingly, from the
histological sections, we observed that the newly formed vessels in
presence of VEGF, Angl, or Ang2 were “functional” based on the
presence red blood cells in the neovessels and that they appeared to
be non-leaky. Vascular permeability study must be conducted in
order to confirm this later statement. However, as not all the
neovessels formed in the sponges are necessarily matured at any
given time, it is thus, not possible to confirm the absence of vascular
leakiness. Furthermore, we also observed that the blood vessels once
formed undergo no or marginal diameter remodeling. Ang1 in the
past has been identified to play an important role in the
reorganization of EC into tubule-like structures during angiogenesis
by stimulating the production of proteases. Plasmin and matrix
metalloproteases, examples of such proteases, decrease the EC-
substratum interaction allowing the ECs to reshape the vessel lumen
[Kim et al., 2000a]. However, in our study, upon the formation of
neovessels by day 7 (with growth factors), we did not observe
additional remodeling over time. This may be due to the rapid
maturation of the newly formed vessels taking place simultaneous to
blood vessel formation which may prevent further unrestricted
enlargement of the growing vessels [Hoeben et al., 2004]. As for the
PBS-treated sponges, the delayed recruitment of SMCs may explain
the slight remodeling of the area of occupancy that took place
between day 14 and 21. Together, VEGF, Ang1, and Ang2 alone are
capable of mediating the maturation process in the presence of a pro-

inflammatory environment suggesting that inflammation plays a
major role in the angiogenic process.

This notion is further strengthened as observed under various
pathological conditions. For instance, suppression of inflammatory
response by genetic abnormalities, pathophysiological processes, or
pharmacotherapy produce adverse effects in the ability of the host to
induce new vessel growth [Jones et al., 1999]; hence inflammation,
once considered to be a homeostatic response protecting the body
from invading pathogens, is now been shown to function as a critical
stimulus for neovessel growth. Neutrophils being the most abundant
leukocyte in the circulation have been demonstrated to play
important roles during pathological angiogenesis. Although, the
exact mechanism through which tumor associated neutrophils
mediate or modulate angiogenesis has not been fully elucidated, the
importance of neutrophils in tumor angiogenesis has been noted
from human biopsies [Van den Steen et al., 2000; Nozawa et al.,
2006]. Similarly, increased macrophage infiltration in various types
of cancer correlates positively with vascularity, tumor stage and
malignancy [Torisu et al., 2000; Chen et al., 2003]. Once again the
exact function of the macrophages in the tumor environment
remains a nuance.

Likewise, although we did not study the exact roles of
inflammatory cells in angiogenesis, we observed the presence of
neutrophils, macrophages, and sparsely T- and B-cells, in the tissue
section by IHC and/or flow cytometry. Surprisingly, the presence of
neutrophils, expected to be one of the first cells recruited at the site of
inflammation, was still observed at latter time points raising the
question whether we have continuous recruitment of neutrophils in
sponges or if they have been differentiated to other cell types.
Recently, it was suggested that neutrophils could differentiate into
neutrophil-DC hybrids with DC-like properties in the setting of
experimentally induced inflammatory lesions in mice [Geng et al.,
2013; Matsushima et al., 2013]. DCs are professional antigen
presenting cells, which reside in peripheral tissues in an immature
state. Upon microbial contact and stimulation by inflammatory
cytokines, it possesses a unique ability to induce both primary and
secondary T- and B-cell responses. It is now clear that DCs express a
wide array of pro- and anti-inflammatory mediators that mediate a
significant role in those pathophysiological settings characterized by
DC activation and angiogenesis [Sozzani et al., 2007]. Thus, we
hypothesized that neutrophils may differentiate into neutrophil-DC
hybrids in our system. However, CD11c"MHCII cells, which we
initially thought to be DCs, turned out to be neither DCs nor
neutrophil-DC hybrid cells. These cells: (1) did not express DC-
lineage transcriptional factor Zbtb46; and (2) did not stimulate
allogenic T-cells in MLR assay. Instead, they expressed macrophage
specific markers including F4/80, CD68, CD206, and CD115/mCSF1R
and were highly phagocytic. Hence, our sponge/Matrigel model,
apart from T- and B-cells, contains two major inflammatory cell
populations: neutrophils and macrophages.

In summary, our murine sponge/Matrigel model in presence of the
pro-angiogenic growth factors (VEGF, Ang1, or Ang2) allowed the
formation of new vessels and more importantly, it led to their
maturation. Moreover, the recruitment of inflammatory cells in the
Matrigel by the provided growth factors further accelerated these
processes with greater potency. Thus, such pro-inflammatory/
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angiogenic model along with the growth factors may provide a
suited autocrine/paracrine environment capable of triggering and
supporting the formation and maturation of neovessels, illustrating
the necessity of inflammation in the creation of mature blood
vessels. Further studies will be needed through selected depletion of
neutrophils and monocytes/macrophages to delineate the role of
these cells in such angiogenic model.
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